MAXIMAL ORDERS OVER REGULAR LOCAL RINGS(1)

BY MARK RAMRAS

Abstract. In this paper various sufficient conditions are given for the maximality of an R-order in a finite-dimensional central simple K-algebra, where R is a regular local ring whose quotient field is K. Stronger results are obtained when we assume the dimension of R to be three. This work depends upon earlier results of this author [5] for regular local rings of dimension two, and the fundamental work of Auslander and Goldman [1] for dimension one.

Introduction. Let (R, \mathfrak{M}) be a regular local ring with maximal ideal \mathfrak{M} , and K the quotient field of R. Let Σ be a central simple K-algebra, finite dimensional over K, and Λ an R-order in Σ . Under what conditions is Λ maximal? Auslander and Goldman [1] have shown that if gl.dim. R=1 then Λ is maximal if and only if gl.dim. $\Lambda=1$ and Λ is quasi-local (i.e., Λ has a unique maximal two-sided ideal, necessarily Rad Λ , the Jacobson radical of Λ). In [5] this author has shown that when gl.dim. R=2, a sufficient condition for maximality is that (a) gl.dim. $\Lambda < \infty$ and (b) Λ is quasi-local [5, Theorem 5.4]. (Under these circumstances gl.dim. $\Lambda=2$.) Examples were given to show that neither (a) nor (b) is necessary. The natural generalization of this theorem is the following:

If gl.dim. R = n, gl.dim. $\Lambda < \infty$, and Λ is quasi-local, then Λ is maximal. (*Note*. These conditions ensure that gl.dim. $\Lambda = n$ and Λ is R-free [5, Corollary 2.17].)

In this paper we prove a weaker result. Namely, we prove the above statement under the additional hypothesis that Λ is contained in an R-free maximal order. It is still an open question whether Σ must contain any R-free maximal order (see [1, p. 20]). We obtain a slightly stronger result in dimension three. There we show that if Σ does contain an R-free maximal order Γ (not necessarily containing Λ) then Λ is isomorphic to Γ . Technical difficulties prevent us from extending this result to higher dimensions.

Two other theorems are proved for dimension three which do not hypothesize the existence of R-free maximal orders and which are therefore of more practical value in determining the maximality of a given Λ . The first requires instead that $\mathfrak{M} \not= N^2$, where $N = \operatorname{Rad} \Lambda$. The second requires the existence of an element $x \in \mathfrak{M} - \mathfrak{M}^2$ such that the center of $\Lambda/x\Lambda$ is R/x and gl.dim. $\Lambda/x\Lambda < \infty$. An example

Received by the editors July 13, 1970.

AMS 1970 subject classifications. Primary 16A18, 16A16; Secondary 16A60.

Key words and phrases. Maximal order, central simple algebra, conductor, global dimension, regular local ring, reflexive module.

⁽¹⁾ This research was supported in part by the U.S. Army Research Office (Durham).

Copyright © 1971, American Mathematical Society

is given in which the second, but not the first theorem, is applicable. Both these theorems follow from a more general one, valid for regular local rings of any dimension: Suppose Λ is an R-reflexive order and $x \in \mathfrak{M} - \mathfrak{M}^2$ is such that $\Lambda_{(x)}$ is $R_{(x)}$ -separable. If $\Lambda/x\Lambda$ is a maximal R/x-order in $\Lambda_{(x)}/x\Lambda_{(x)}$, then Λ is a maximal R-order.

In a sense, the maximality of Λ really boils down to the question of whether $\Lambda \otimes_R R_{\mathfrak{P}}$ is quasi-local for every height one prime \mathfrak{P} in R. For Λ is maximal if and only if Λ is R-reflexive and $\Lambda \otimes_R R_{\mathfrak{P}}$ is a maximal $R_{\mathfrak{P}}$ -order for every height one prime \mathfrak{P} [1, Theorem 1.5]. If gl.dim. $\Lambda < \infty$, then by [5, Corollary 2.17] Λ is R-free (and hence R-reflexive) and gl.dim. $\Lambda =$ gl.dim. R. Furthermore, since gl.dim. $\Lambda =$ gl.dim. R and R is torsion-free over R, for any prime ideal R of R,

gl.dim.
$$\Lambda \otimes_R R_{\mathfrak{Q}} = \operatorname{gl.dim}. R_{\mathfrak{Q}}$$

[5, Corollary 3.4]. Thus our assertion is justified by the Auslander-Goldman criterion in dimension one. A direct proof that $\Lambda \otimes_R R_{\mathfrak{P}}$ is quasi-local seems difficult, and an example is provided which may suggest why. We exhibit a Λ which has global dimension three and is quasi-local. Furthermore, it is maximal. But for a certain height *two* prime \mathfrak{P} of R, $\Lambda \otimes_R R_{\mathfrak{P}}$ is *not* quasi-local.

Preliminaries. All rings in this paper have units, and every module is unital and finitely generated. In particular, every algebra is a finitely generated module over its center.

We shall use the abbreviations gl.dim. for global dimension, p.d. for projective dimension, and codim for codimension. (If A is a commutative local ring and E is a nonzero A-module, then $\operatorname{codim}_A E$ is the length of the longest possible sequence of nonunits x_1, \ldots, x_t in A such that x_1 is not a zero-divisor on E and if $2 \le i \le t$, x_i is not a zero-divisor on $E/(x_1, \ldots, x_{i-1})E$.) (R, \mathfrak{M}) will always be a regular local ring with maximal ideal \mathfrak{M} , and K will denote its quotient field. Σ is a central simple K-algebra.

1. R has arbitrary (finite) global dimension.

PROPOSITION 1.1. Suppose Γ is a central R-algebra. If gl.dim. $\Gamma < \infty$ and Γ is quasi-local, then $\Gamma \otimes_R K$ is a central simple K-algebra.

Proof. By [5, Corollary 2.17], gl.dim. $\Gamma = \text{gl.dim}$. R and Γ is R-free. Thus by [5, Corollary 3.4], gl.dim. $\Gamma \otimes_R K = \text{gl.dim}$. K = 0. Hence $\Gamma \otimes_R K$ is semisimple, say $\Gamma \otimes_R K = \Sigma_1 \oplus \cdots \oplus \Sigma_s$ where each Σ_t is a simple K-algebra. Since the center of Γ is R, the center of $\Gamma \otimes_R K$ is K. If K_t is the center of Σ_t , then $K = K_1 \oplus \cdots \oplus K_s$. But K is a field, so s = 1. Thus $\Gamma \otimes_R K = \Sigma_1$, which is a central simple K-algebra.

PROPOSITION 1.2. Let $\Omega \subset \Gamma$ be R-orders in Σ . Suppose gl.dim. $\Omega = \text{gl.dim}$. R = n and Γ is R-free. Then gl.dim. $\Gamma = n$.

Proof. Since Γ is R-free, gl.dim. Γ =gl.dim. R if and only if every R-free Γ -module E is Γ -projective [5, Proposition 3.5]. Since gl.dim. Ω =n,

$$n \ge \text{p.d.}_{\Omega} E/\mathfrak{M}E = \text{codim}_{R} E + \text{p.d.}_{\Omega} E = n + \text{p.d.}_{\Omega} E.$$

(codim_R $E = \text{codim}_R R = n$ since E is R-free.) It follows that p.d._{Ω} E = 0, i.e., E is Ω -projective. Now E is Γ -projective by [4, Lemma 1.3].

COROLLARY 1.3. Suppose gl.dim. R=2=gl.dim. Ω where Ω is an R-order in Σ . Then if Γ is any maximal order containing Ω , gl.dim. $\Gamma=2$.

Proof. Any maximal order is R-reflexive [1, Theorem 1.5]. Hence Γ is R-free, since gl.dim. R=2. Proposition 1.2 now applies.

THEOREM 1.4. Suppose Λ is an R-order in Σ such that gl.dim. $\Lambda < \infty$ and Λ is quasi-local. If Γ is any R-free order in Σ containing Λ , then $\Gamma = \Lambda$. Consequently if Λ is contained in an R-free maximal order, then Λ is maximal.

Proof. By [5, Corollary 2.17] gl.dim. $\Lambda = n = \text{gl.dim}$. R. Let

$$C'_{\Lambda}(\Gamma) = \{x \in \Sigma \mid \Gamma x \subset \Lambda\},\$$

the right conductor of Γ in Λ . Since $\Lambda \subset \Gamma$, $C'_{\Lambda}(\Gamma) = \operatorname{Hom}_{\Lambda}(\Gamma, \Lambda)$. Since Γ is R-free and gl.dim. $\Lambda = \operatorname{gl.dim}$. R, Γ is Λ -projective by [5, Proposition 3.5] and therefore $\operatorname{Hom}_{\Lambda}(\Gamma, \Lambda)$ is Λ -projective. Thus $C'_{\Lambda}(\Gamma)$ is a projective right ideal in Λ , and since Λ is quasi-local, $C'_{\Lambda}(\Gamma)$ is principal (see [1, Proposition 3.3]). Say $C'_{\Lambda}(\Gamma) = t\Lambda$. $\Gamma t \subset C'_{\Lambda}(\Gamma)$ so $\Gamma t \subset t\Lambda$. But t is a unit in Σ since $C'_{\Lambda}(\Gamma) \cap R \neq (0)$. Hence $\Gamma \subset t\Lambda t^{-1}$. Since $\Lambda \subset \Gamma$, we have $\Lambda \subset t\Lambda t^{-1}$. We shall show that $\Lambda = t\Lambda t^{-1}$, from which it follows that $\Lambda = \Gamma$.

Let $\sigma: \Sigma \to \Sigma$ be the inner automorphism $x \leadsto txt^{-1}$. Thus $\Lambda \subset \sigma(\Lambda)$, which implies that $\sigma(\Lambda) \subset \sigma^2(\Lambda)$, and so on. We obtain an increasing chain of orders $\Lambda \subset \sigma(\Lambda) \subset \sigma^2(\Lambda) \subset \cdots \circ^4(\Lambda) \cdots$. But there can be no infinite ascending chain of R-orders in Σ . For the union of such a chain would be a subring of Σ integral over R, and hence finitely generated as an R-module (see [3, p. 70, Satz 6]). But R is noetherian, so a finitely generated R-module cannot contain an infinite ascending chain of submodules. Thus for some $m \ge 1$, $\sigma^m(\Lambda) = \sigma^{m+1}(\Lambda)$. Therefore $\sigma(\Lambda) = \Lambda$ and we are done.

REMARK. By Proposition 1.1 we could have replaced the hypothesis that Λ is an R-order in Σ with the hypothesis that R is the center of Λ . The same is true for Theorem 2.2 in the next section.

2. The global dimension of R is three. We begin by stating a lemma which we have been able to prove only for regular local rings of dimensions at most three.

LEMMA 2.1. Let Λ be an R-algebra which as an R-module is R-free. Suppose gl.dim. $\Lambda = \text{gl.dim.}\ R (=3)$. Let E be a left Λ -module which is R-reflexive, and suppose that $\text{End}_{\Lambda}(E)$ is R-free. Then E is Λ -projective.

Before proving this lemma let us state and demonstrate the main theorem.

Theorem 2.2. R is a regular local ring of dimension three. Let Λ be a quasi-local R-order in Σ with gl.dim. $\Lambda < \infty$. If there exists an R-free maximal order Γ in Σ then $\Lambda = t^{-1}\Gamma t$ for some unit t in Σ . Thus Λ is maximal and all R-free maximal orders in Σ are isomorphic.

Proof. Since Γ is a maximal order and R is an integrally closed noetherian domain, for any R-order Ω in Σ , $\Gamma = \operatorname{End}_{\Omega}(C_{\Omega}^{r}(\Gamma))$ [5, Theorem 6.2]. So $\Gamma = \operatorname{End}_{\Lambda}(C_{\Lambda}^{r}(\Gamma))$. Since Γ is R-free (by [5, Corollary 2.17]) and hence R-reflexive, $C_{\Lambda}^{r}(\Gamma)$ is also R-reflexive [5, Proposition 5.3]. But Γ is R-free, so $C_{\Lambda}^{r}(\Gamma)$ is Λ -projective by Lemma 2.1. Just as in the proof of Theorem 1.4 we have $C_{\Lambda}^{r}(\Gamma) = t\Lambda$ for some t which is invertible in Σ . Again, since $C_{\Lambda}^{r}(\Gamma)$ is a left Γ -module, $\Gamma t \subset t\Lambda$ and so $\Gamma \subset t\Lambda t^{-1}$. But Γ is maximal, so $\Gamma = t\Lambda t^{-1}$ and thus $\Lambda = t^{-1}\Gamma t$.

COROLLARY 2.3. If Σ is a full matrix ring $M_n(K)$ and Λ is a quasi-local R-order in Σ and gl.dim. $\Lambda < \infty$ then Λ is maximal and $\Lambda \simeq M_n(R)$.

Proof. $M_n(R)$ is an R-free maximal order in Σ .

PROPOSITION 2.4. Let R be regular local of dimension three. Suppose Λ is an R-free maximal order and gl.dim. $\Lambda=3$. Let I be a two-sided ideal in Λ which is R-reflexive. Then I is R-free (and hence Λ -projective).

Proof. Since I is two-sided, $\operatorname{End}_{\Lambda}(I)$ is an R-order containing Λ . By the maximality of Λ , $\operatorname{End}_{\Lambda}(I) = \Lambda$ and is thus R-free. Since I is R-reflexive and gl.dim. $\Lambda = 3$, the desired result follows from Lemma 2.1.

Corollary 2.5. Let R and Λ satisfy the hypotheses of the preceding proposition. Suppose for i=1, 2 that I_i is a two-sided ideal in Λ and is Λ -projective. Then $I_1 \cap I_2$ is Λ -projective.

Proof. Since I_i is Λ -projective it is R-free and hence R-reflexive. Therefore $I_1 \cap I_2$ is R-reflexive, since over an integrally closed noetherian domain the double dual of a finitely generated torsion-free module is the intersection of its localizations at all the height one primes, and for any prime \mathfrak{P} , we have $(I_1 \cap I_2)_{\mathfrak{P}} = (I_1)_{\mathfrak{P}} \cap (I_2)_{\mathfrak{P}}$. Clearly $I_1 \cap I_2$ is two-sided. By Proposition 2.4 $I_1 \cap I_2$ is Λ -projective.

We return now to the proof of Lemma 2.1. This lemma is a generalization of [1, Theorem 4.4 (b) \Rightarrow (a)]. The idea is to ape that proof, which consists of a sequence of propositions. We shall state each of those propositions in its generalized version. For the first two we omit proofs since the proofs of their counterparts in [1] carry over nearly verbatim.

Throughout this proof (S, \mathfrak{M}) will be a commutative noetherian local ring with maximal ideal \mathfrak{M} and Γ will be an S-algebra which is a finitely generated S-module.

PROPOSITION 2.1 A (CF. [1, PROPOSITION 4.7]). Let A and B be Γ -modules such that $\operatorname{Hom}_{\Gamma}(A, B) \neq 0$. If $\operatorname{codim}_{S} B \geq i$ for i = 1, 2 then $\operatorname{codim}_{S} \operatorname{Hom}_{\Gamma}(A, B) \geq i$.

PROPOSITION 2.1 B (CF. [1, LEMMA 4.8]). Let S be regular local of dimension at least three and let B be a Γ -module such that $\operatorname{codim}_S B \ge 2$. If A is a Γ -module such that $\operatorname{Hom}_{\Gamma}(A, B)$ is S-projective and $\operatorname{Ext}_{\Gamma}^1(A, B) \ne 0$, then $\operatorname{codim}_S \operatorname{Ext}_{\Gamma}^1(A, B) > 0$.

PROPOSITION 2.1 C (CF. [1, PROPOSITION 4.9]). If S is a regular local ring, Γ is S-free, gl.dim. $\Gamma_{\mathfrak{P}} = \text{gl.dim}$. $S_{\mathfrak{P}}$ for all primes \mathfrak{P} of height at most two, E a Γ -module which is S-reflexive and $\operatorname{Hom}_{\Gamma}(E, E)$ is S-free, then $\operatorname{Ext}_{\Gamma}^{\Gamma}(E, E) = 0$.

Proof. By induction on gl.dim. S. If gl.dim. $S \le 2$, then since E is S-reflexive it is S-projective. By hypothesis Γ is S-free and gl.dim. $\Gamma = \text{gl.dim}$. S (since we are now assuming that the height of \mathfrak{M} is at most two). Thus E is Γ -projective by [5, Proposition 3.5], and so $\text{Ext}_{\Gamma}^{\Gamma}(E, E) = 0$.

Now suppose that gl.dim. $S=k\geq 3$ and the proposition is true for rings of dimension less than k. Let $\mathfrak P$ be a nonmaximal prime ideal of S. Then gl.dim. $S_{\mathfrak P} < k$. $E_{\mathfrak P}$ is $S_{\mathfrak P}$ -reflexive and $\operatorname{Hom}_{S_{\mathfrak P}}(E_{\mathfrak P}, E_{\mathfrak P}) = \operatorname{Hom}_{S}(E, E) \otimes_{S} S_{\mathfrak P}$ is $S_{\mathfrak P}$ -free. Any prime ideal of $S_{\mathfrak P}$ of height at most two can be represented as $q_{\mathfrak P}$ where q is a prime ideal of S of height at most two. $(\Gamma_{\mathfrak P})_{q_{\mathfrak P}} = \Gamma_q$ and $(S_{\mathfrak P})_{q_{\mathfrak P}} = S_q$ so that gl.dim. $(\Gamma_{\mathfrak P})_{q_{\mathfrak P}} = \operatorname{gl.dim}_{S_{\mathfrak P}}(S_{\mathfrak P})_{q_{\mathfrak P}}$. Hence by our induction hypothesis $\operatorname{Ext}^1_{\Gamma_{\mathfrak P}}(E_{\mathfrak P}, E_{\mathfrak P}) = 0$, i.e., $\operatorname{Ext}^1_{\Gamma}(E, E) \otimes_{S} S_{\mathfrak P} = 0$. Thus no nonmaximal prime of S is an associated prime of $\operatorname{Ext}^1_{\Gamma}(E, E)$, so if $\operatorname{Ext}^1_{\Gamma}(E, E) \neq 0$, then $\operatorname{Ass}_{S}(\operatorname{Ext}^1_{\Gamma}(E, E)) = \{\mathfrak M\}$. But then $\operatorname{codim}_{S} \operatorname{Ext}^1_{\Gamma}(E, E) = 0$. By Proposition 2.1 B this is impossible, so $\operatorname{Ext}^1_{\Gamma}(E, E) = 0$.

PROPOSITION 2.1 D (CF. [1, PROPOSITION 4.10]). Suppose the S-algebra Γ is quasi-local and E is a Γ -module with $\operatorname{p.d.}_{\Gamma} E = n$. If A is a nonzero Γ -module then $\operatorname{Ext}_{\Gamma}^n(E,A) \neq 0$.

Proof. Since p.d., E = n, $\operatorname{Ext}_{\Gamma}^{n}(E, T) \neq 0$ for some simple Γ -module T [5, Corollary 1.5]. Since Γ is quasi-local, all simple Γ -modules are isomorphic. It follows that A/JA is a direct sum of copies of T, where $J = \operatorname{Rad} \Gamma$. Ext commutes with direct sums, so $\operatorname{Ext}_{\Gamma}^{n}(E, A/JA) \neq 0$. From the exact sequence

$$0 \rightarrow JA \rightarrow A \rightarrow A/JA \rightarrow 0$$

we obtain a long exact sequence

$$\cdots \operatorname{Ext}^n_{\Gamma}(E, A) \to \operatorname{Ext}^n_{\Gamma}(E, A/JA) \to \operatorname{Ext}^{n+1}_{\Gamma}(E, JA) \cdots$$

 $\operatorname{Ext}_{\Gamma}^{n+1}(E, -) = 0$ since p.d., E = n. It follows that $\operatorname{Ext}_{\Gamma}^{n}(E, A) \neq 0$.

We may now complete the proof of Lemma 2.1. Since $\operatorname{gl.dim}$. $R=3=\operatorname{codim}_R R$, $\operatorname{codim}_R \operatorname{Hom}_R (E^*,R) \geq 2$ by [1, Proposition 4.7] $(X^* \operatorname{denotes} \operatorname{Hom}_R (X,R))$. But $\operatorname{Hom}_R (E^*,R) = E^{**}$ and by hypothesis $E=E^{**}$, so $\operatorname{codim}_R E \geq 2$. Hence $\operatorname{p.d.}_R E \leq 1$. Since Λ is R-free and $\operatorname{gl.dim}$. $\Lambda = \operatorname{gl.dim}$. R, every R-free Λ -module is Λ -projective [5, Proposition 3.5]. From this it follows that for any Λ -module A, $\operatorname{p.d.}_\Lambda A = \operatorname{p.d.}_R A$. Thus $\operatorname{p.d.}_\Lambda E \leq 1$. But since $\operatorname{End}_\Lambda (E)$ is R-free, $\operatorname{Ext}^1_\Lambda (E,E) = 0$ by Proposition 2.1 C. (Since $\operatorname{gl.dim}$. $\Lambda = \operatorname{gl.dim}$. R, for any prime $\mathfrak P$ in R $\operatorname{gl.dim}$. $\Lambda_{\mathfrak P} = \operatorname{gl.dim}$. $R_{\mathfrak P}$ by [5, Corollary 3.4].) Now by Proposition 2.1 D $\operatorname{p.d.}_\Lambda E$ cannot be 1, so it must be 0 and E is Λ -projective.

3. More practical sufficient conditions. We shall give some more practical sufficient conditions for the maximality of R-orders having finite global dimension.

THEOREM 3.1. Let R be regular local of dimension n. Assume that the R-order Λ is R-reflexive. Suppose that for some $x \in \mathfrak{M} - \mathfrak{M}^2$, $\Lambda_{(x)}$ is $R_{(x)}$ -separable and $\Lambda/x\Lambda$ is a maximal R/x-order in $\Lambda(x)/x\Lambda_{(x)}$.

Then Λ is maximal.

Proof. It suffices, by [1, Theorem 1.5], to show that for every height one prime \mathfrak{D} in R, $\Lambda_{\mathfrak{D}}$ is maximal.

If $\mathfrak{Q}=(x)$ we are done since $\Lambda_{(x)}$ is $R_{(x)}$ -separable and therefore maximal [2, Proposition 7.2]. Suppose $\mathfrak{Q}\neq(x)$. Let \mathfrak{P} be a minimal associated prime of $xR+\mathfrak{Q}$. Then height $\mathfrak{P}\leq 1+$ height $\mathfrak{Q}=2$. Since $\mathfrak{Q}\neq(x)$ and height $\mathfrak{Q}=1$, $x\notin\mathfrak{Q}$. Therefore \mathfrak{P} properly contains \mathfrak{Q} , and so height $\mathfrak{P}=2$. \mathfrak{P}/x is a height one prime in R/x. Since $\Lambda/x\Lambda$ is maximal, $(\Lambda/x\Lambda)_{\mathfrak{P}/x}$ is maximal over a discrete valuation ring and is therefore quasi-local. But $(\Lambda/x\Lambda)_{\mathfrak{P}/x} \simeq \Lambda_{\mathfrak{P}}/x\Lambda_{\mathfrak{P}}$, so $\Lambda_{\mathfrak{P}}/x\Lambda_{\mathfrak{P}}$ is hereditary and quasi-local. Also, since x is regular on $\Lambda_{\mathfrak{P}}$ and gl.dim. $\Lambda_{\mathfrak{P}}/x\Lambda_{\mathfrak{P}}<\infty$, by [5, Proposition 5.6] gl.dim. $\Lambda_{\mathfrak{P}}=1+$ gl.dim. $\Lambda_{\mathfrak{P}}/x\Lambda_{\mathfrak{P}}=2$, and so $\Lambda_{\mathfrak{P}}$ is maximal by [5, Theorem 5.4]. Hence $(\Lambda_{\mathfrak{P}})_{\mathfrak{Q}_{\mathfrak{P}}}$ is maximal, i.e. $\Lambda_{\mathfrak{Q}}$ is maximal.

COROLLARY 3.2. Let R be regular local and let Λ be a maximal R-order in the central simple K-algebra Σ . Let $\Lambda[[X]] = \Lambda \otimes_R R[[X]]$ and $\Sigma((X)) = \Sigma \otimes_K K((X))$, where R[[X]] denotes the formal power series ring over R in one indeterminate and K((X)) is its quotient field. Then $\Lambda[[X]]$ is a maximal R[[X]]-order in the central simple K((X))-algebra $\Sigma((X))$.

Proof. $\Sigma((X))$ is central separable (and hence central simple) over K((X)) by [2, Corollary 1.6]. To simplify notation, let S = R[[X]] and $\Gamma = \Lambda[[X]]$. Λ is R-reflexive and S is R-free and hence R-flat, so Γ is S-reflexive. $S/XS \simeq R$ and $\Gamma/X\Gamma \simeq \Lambda$. gl.dim. S = 1 + gl.dim. R, so S is regular local. $\Gamma_{(X)}/X\Gamma_{(X)} \simeq \Lambda \otimes_R K = \Sigma$. So $\Gamma_{(X)}/X\Gamma_{(X)}$ is central separable over $S_{(X)}/XS_{(X)}$ and thus $\Gamma_{(X)}$ is central separable over $S_{(X)}$. By our hypothesis on Λ , $\Gamma/X\Gamma$ is a maximal S/XS-order in $\Gamma_{(X)}/X\Gamma_{(X)}$. The maximality of Γ now follows from Theorem 3.1.

COROLLARY 3.3. Suppose R is regular local of dimension three. Assume that Λ is quasi-local, gl.dim. $\Lambda < \infty$, and $\mathfrak{M} \not\subset \mathbb{N}^2$, where $N = \text{Rad } \Lambda$. Then Λ is maximal.

Proof. Λ is R-free (and hence R-reflexive) by [5, Corollary 2.17]. Since $\mathfrak{M} \subset \mathbb{N}^2$ there is an $x \in \mathfrak{M} - \mathbb{N}^2$ such that $\Lambda_{(x)}$ is $R_{(x)}$ -separable. (For a proof of this, see the proof of [5, Theorem 5.7].) Furthermore, $\Lambda/x\Lambda$ is quasi-local, and since $x \in \mathfrak{M} - \mathbb{N}^2$ and gl.dim. $\Lambda < \infty$, gl.dim. $\Lambda/x\Lambda = \text{gl.dim}$. $\Lambda - 1$ [5, Theorem 6.9]. It follows from [5, Theorem 5.4] that $\Lambda/x\Lambda$ is maximal in $\Lambda_{(x)}/x\Lambda_{(x)}$. The preceding theorem now applies.

Example 1. (a) Let R be regular local of dimension 2 and suppose X and Y generate the maximal ideal \mathfrak{M} . Define a quaternion algebra $\Gamma = R[1, \sigma, \tau, \sigma\tau]$ (i.e.,

 Γ is R-free with generators 1, σ , τ , $\sigma\tau$) by setting $\sigma^2 = X$, $\tau^2 = Y$, and $\tau\sigma = -\sigma\tau$. Then Rad $\Gamma = \Gamma(\sigma, \tau)$ and $\Gamma/\text{Rad }\Gamma \approx R/\mathfrak{M}$. Thus Γ is local. Define

$$f: \Gamma \oplus \Gamma \to \Gamma(\sigma, \tau)$$
 by $f(\gamma_1, \gamma_2) = \gamma_1 \sigma + \gamma_2 \tau$.
 $0 \longrightarrow \Gamma \cdot \langle \tau, \sigma \rangle \longrightarrow \Gamma \oplus \Gamma \xrightarrow{f} \Gamma(\sigma, \tau) \longrightarrow 0$

is then a Γ -free resolution of Rad Γ . Thus p.d., Rad $\Gamma \le 1$. gl.dim. $\Gamma = \text{p.d.}_{\Gamma} \Gamma / \text{Rad } \Gamma = 1 + \text{p.d.}_{\Gamma} \text{ Rad } \Gamma \le 2$. Since Γ is local, gl.dim. $\Gamma = \text{gl.dim}$. R = 2.

(b) Let R be regular local of dimension three and assume that 2 is a unit in R. Suppose $\mathfrak{M}=(X, Y, Z)$. Define a quaternion algebra $\Lambda=R[1, \alpha, \beta, \alpha\beta]$ by setting $\alpha^2=X+Z^2$, $\beta^2=Y$, and $\alpha\beta=-\beta\alpha$. Now $\Lambda/Z\Lambda$ is isomorphic to the algebra Γ in part (a). So gl.dim. $\Lambda/Z\Lambda=2$ and $\Lambda/Z\Lambda$ is local. Thus Λ is local, and by [5, Proposition 5.6] gl.dim. $\Lambda=3$. $N=\mathrm{Rad}\ \Lambda=\Lambda(\alpha,\beta,Z)$. $Z\notin N^2$, so $\mathfrak{M}\neq N^2$. By Corollary 3.3 Λ is maximal.

 Λ is rather strange, though. It itself is local, and since it is maximal, Λ_q is quasi-local for every height one prime q of R. However, $\mathfrak{P}=(X,Y)R$ is a height two prime, such that $\Lambda_{\mathfrak{P}}$ is not quasi-local. It is easily seen that $\Lambda_{\mathfrak{P}}(\alpha-Z,X,\beta)$ and $\Lambda_{\mathfrak{P}}(\alpha+Z,X,\beta)$ are maximal two-sided ideals in $\Lambda_{\mathfrak{P}}$; indeed $\Lambda_{\mathfrak{P}}$ modulo either ideal is isomorphic to the field $R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}}$. The two are distinct since $\alpha+Z-(\alpha-Z)=2Z$ is a unit in $R_{\mathfrak{P}}$.

COROLLARY 3.4. Let R be regular local of dimension three and Λ a quasi-local central R-algebra. Suppose that, for some $x \in \mathfrak{M} - \mathfrak{M}^2$, gl.dim. $\Lambda/x\Lambda < \infty$ and the center of $\Lambda/x\Lambda$ is R/x. Then gl.dim. $\Lambda = 3$ and Λ is a maximal order in the central simple K-algebra $\Lambda \otimes_R K$.

Proof. By Proposition 1.1, $\Lambda/x\Lambda \otimes_{R/x} R_{(x)}/xR_{(x)} = \Lambda_{(x)}/x\Lambda_{(x)}$ is central simple (or equivalently, central separable) over $R_{(x)}/xR_{(x)}$. Hence $\Lambda_{(x)}$ is $R_{(x)}$ -separable [2, Theorem 4.7].

 $\Lambda/x\Lambda$ is quasi-local, has finite global dimension and gl.dim. R/x=2, so by [5, Theorem 5.4] $\Lambda/x\Lambda$ is a maximal R/x-order in $\Lambda_{(x)}/x\Lambda_{(x)}$, and gl.dim. $\Lambda/x\Lambda=2$. By [5, Proposition 5.6] gl.dim. $\Lambda=$ gl.dim. $\Lambda/x\Lambda+1=3$. It follows from Proposition 1.1 that $\Lambda\otimes_R K$ is a central simple K-algebra. Since Λ is quasi-local and gl.dim. $\Lambda<\infty$, Λ is R-free. Hence by Theorem 3.1, Λ is maximal in $\Lambda\otimes_R K$.

We conclude with an example for which Corollary 3.4, but not Corollary 3.3, is applicable.

EXAMPLE 2. Let R be regular local of dimension three, $\mathfrak{M} = (X, Y, Z)$, and characteristic $(R/\mathfrak{M}) \neq 2$. Let $\Lambda = R[1, \alpha, \beta, \alpha\beta]$ where $\alpha^2 = X$, $\beta^2 = Y$, and $\beta\alpha = -\alpha\beta + Z$.

Then $N = \text{Rad } \Lambda = \Lambda(\alpha, \beta)$. Notice that $Z \in N^2$, so that $\mathfrak{M} \subset N^2$. Thus Corollary 3.3 does not apply. However, consider $\Lambda/Z\Lambda$. It is $R/Z[1, \bar{\alpha}, \bar{\beta}, \bar{\alpha}\bar{\beta}]$ where $\bar{\alpha}^2 = X$, $\bar{\beta}^2 = Y$, and $\bar{\beta}\bar{\alpha} = -\bar{\alpha}\bar{\beta}$. This is the ring Γ in part (a) of Example 1. Hence $\Lambda/Z\Lambda$ is

local and gl.dim. $\Lambda/Z\Lambda=2$. Since characteristic $(R/\mathfrak{M})\neq 2$, 2 is a unit in R/Z and therefore the center of $\Lambda/Z\Lambda$ is R/Z. From Corollary 3.4 it follows that Λ is maximal.

REFERENCES

- 1. M. Auslander and O. Goldman, *Maximal orders*, Trans. Amer. Math. Soc. **97** (1960), 1-24. MR **22** #8034.
- 2. —, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 22 #12130.
 - 3. M. Deuring, Algebren, Springer, Berlin, 1935.
- 4. M. Harada, *Hereditary orders*, Trans. Amer. Math. Soc. 107 (1963), 273-290. MR 27 #1474.
- 5. M. Ramras, Maximal orders over regular local rings of dimension two, Trans. Amer. Math. Soc. 142 (1969), 457-479. MR 39 #6878.

HARVARD UNIVERSITY,
CAMBRIDGE, MASSACHUSETTS 02138